#245 Can We Make Generative AI Cheaper? With Natalia Vassilieva, Senior VP & Field CTO & Andy Hock, VP, Product & Strategy at Cerebras Systems
With AI tools constantly evolving, the potential for innovation seems limitless. But with great potential comes significant costs, and the question of efficiency and scalability becomes crucial. How can you ensure that your AI models are not only pushing boundaries but also delivering results in a cost-effective way? What strategies can help reduce the financial burden of training and deploying models, while still driving meaningful business outcomes? Natalia Vassilieva is the VP & Field CTO of ML at Cerebras Systems. Natalia has a wealth of experience in research and development in natural language processing, computer vision, machine learning, and information retrieval. As Field CTO, she helps drive product adoption and customer engagement for Cerebras Systems' wafer-scale AI chips. Previously, Natalia was a Senior Research Manager at Hewlett Packard Labs, leading the Software and AI group. She also served as the head of HP Labs Russia leading research teams focused on developing algorithms and applications for text, image, and time-series analysis and modeling. Natalia has an academic background, having been a part-time Associate Professor at St. Petersburg State University and a lecturer at the Computer Science Center in St. Petersburg, Russia. She holds a PhD in Computer Science from St. Petersburg State University.Andy Hock is the Senior VP, Product & Strategy at Cerebras Systems. Andy runs the product strategy and roadmap for Cerebras Systems, focusing on integrating AI research, hardware, and software to accelerate the development and deployment of AI models. He has 15 years of experience in product management, technical program management, and enterprise business development; over 20 years of experience in research, algorithm development, and data analysis for image processing; and 9 years of experience in applied machine learning and AI. Previously he was Product Management lead for Data and Analytics for Terra Bella at Google, where he led the development of machine learning-powered data products from satellite imagery. Earlier, he was Senior Director for Advanced Technology Programs at Skybox Imaging (which became Terra Bella following its acquisition by Google in 2014), and before that was a Senior Program Manager and Senior Scientist at Arete Associates. He has a Ph.D. in Geophysics and Space Physics from the University of California, Los Angeles.In the episode, Richie, Natalia and Andy explore the dramatic recent progress in generative AI, cost and infrastructure challenges in AI, Cerebras’ custom AI chips and other hardware innovations, quantization in AI models, mixture of experts, RLHF, relevant AI use-cases, centralized vs decentralized AI compute, the future of AI and much more. Links Mentioned in the Show:CerebrasCerebras Launches the World’s Fastest AI InferenceConnect with Natalia and AndyCourse: Implementing AI Solutions in BusinessRewatch sessions from RADAR: AI EditionNew to DataCamp?Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with<a...